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Abstract

This is the second paper of a two-part paper investigating the complex phenomenon of the dynamic transition from

progressive buckling to global bending collapse of a long circular cylindrical shell subjected to an axial impact. The

paper focuses on the theoretical analysis of the phenomenon. The two-phase concept for the deformation of �Type II�
structures is employed to explore the influence of the loading parameters and the material and geometrical charac-

teristics of a shell on the critical length that marks the transition between the two collapse modes. Simple models for the

initial compressive phase in the case of global bending and for the development of a single axisymmetric wrinkle in

a circular shell, are used to analyse some numerical results presented in Part I of this study [International Journal

of Solids and Structures 41 (2004) 1565].

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The experiments on the dynamic buckling transition of relatively long circular tubes discussed in Part I

(Karagiozova and Alves, 2004) show that, in contrast to the static response reported by Andrews et al.

(1983) and Abramowicz and Jones (1997), tubes with identical characteristics 2R=h and L=2R can respond

either by progressive buckling or global bending when subjected to axial impact loads depending on the

initial velocity. The numerical simulations of the dynamic buckling transition in Part I (Karagiozova and
Alves, 2004) reveal that a variation of the material properties can alter the collapse mode of circular tubes

when identical dynamic loads are applied. It is evident that the phenomenon is influenced by various

factors. Therefore, the objective of this study is to explore via a theoretical analysis the influence of the

characteristic parameters on the dynamic buckling transition.
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Nomenclature

A cross-section area of a shell

E, Eh, Er the Young�s modulus, hardening and reduced modulus, respectively

F s, F h axial and circumferential forces in a shell, respectively

F c radial force in the model in Fig. 9

D, q material constants, Eq. (37)

G impact mass

G1 impact mass per unit circumferential length

L length of a shell
M mass of a shell

R radius of a shell

T0, Tb, Tc initial kinetic energy, bending and compression energy, respectively

V velocity

V0 initial impact velocity

V � initial velocity of the proximal end of the model in Fig. 6 at the end of the compression phase

c, c1 bending rigidity coefficients, Eqs. (9) and (2), respectively

h thickness of a shell
l 1:34

ffiffiffiffiffiffi
Rh

p
, length of a link (Fig. 9)

m mass per unit length (Fig. 6)

m� mass per unit circumferential length of a single wrinkle (Fig. 9)

nt ð2nt þ 1Þ, number of integration points across the shell thickness (Eq. (30)–(34))

t time

t� time at the end of the compression phase

u axial displacement of a shell (Fig. 6)

w lateral displacement
w0 initial lateral displacement (Figs. 6 and 9)

x, z axial and through the thickness coordinates of a shell, respectively

D axial compression (overall reduction of the shell length)

ee, ex, eh equivalent, axial and circumferential strains, respectively

k ratio Eh=E
q material density

/ angle of rotation (Fig. 9)

u angle of rotation (Fig. 6)
r0, re material flow stress and equivalent stress, respectively

rx, rh axial and circumferential stress, respectively
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The mixed collapse modes––global bending with progressively developed wrinkles, which are observed
experimentally (Abramowicz and Jones, 1997; Karagiozova and Alves, 2004) and numerically (Kara-

giozova and Alves, 2004), suggest that �rod� and �shell� buckling modes co-exist in long tubes and they can

develop simultaneously during impact. Moreover, two phases of deformation––initial compression and

bending––characterise the response of shells that buckle in the plastic range. This particular feature means

that the axially loaded elastic–plastic shells can be classified as �Type II� structures, which are sensitive to the

initial velocity (Su et al., 1995; Tam and Calladine, 1991; Zhang and Yu, 1989), striking mass (Tam and

Calladine, 1991) and material properties (Karagiozova and Jones, 2001, 2002). A significant proportion of
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the initial kinetic energy can be absorbed during the first response phase of these structures, depending on

how long the lateral inertia can support the unbuckled shape (Karagiozova et al., 2000; Karagiozova and

Jones, 2002). Thus, the compressive phase can influence the initial conditions for the subsequent phase of

deformation and in this way can affect the selection of the particular mode of collapse––global bending or
progressive buckling (folding).

The influence of the material properties and loading parameters on the dynamic buckling mechanism is

analysed in this paper using a two-phase concept, but no attempt has been made to study the influence of

any mode interaction on the buckling transition. Elastic–plastic bilinear material models are used with the

same characteristics as those of materials Mat1, Mat2 and Mat3 discussed in Part I (Karagiozova and

Alves, 2004).
2. Mechanics of dynamic elastic–plastic buckling

2.1. Response of a circular shell to an axial impact

Inertia influences the response of a tube to an axial impact in a complex way affecting both the tendency
of a long tube to buckle in a �rod� mode (global bending) and the response of the tube to crush in a �shell�
mode (progressive buckling collapse). This can be seen when analysing the variation with time of some

displacements and velocities associated with characteristic locations along the tube length.

Particular examples of the response of a tube with L ¼ 450 mm made from material Mat2 and subjected

to 5 kJ impacts are shown in Figs. 1 and 2. An initial velocity of 8.5 m/s causes global bending of the tube

while the same tube responds by progressive buckling to a 8.75 m/s impact. Fig. 1(a) and (b) show the radial

displacement–time histories at the tips of the wrinkles near to the proximal and distal end of the tube

(labelled t and b in Fig. 3, respectively) together with lateral displacement at the location of the �bending
hinge�, which is closest to the proximal end (labelled m in Fig. 3(b)). It is evident that, in both cases, i.e.
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Fig. 1. (a)Displacement–time and (b) velocity–time behaviour of a tube with L ¼ 450 mm subjected to a 5 kJ axial impact where

V0 ¼ 8:5 m/s and undergoing global collapse. (c) and (d)––same as in (a) and (b) but for an impact velocity of 8.75 m/s, associated with

progressive buckling (symbols t, m and b defined as in Fig. 3).
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Fig. 2. Phase-plane diagrams associated with the tip of the top wrinkle (continuous line for t in Fig. 3) and �bending hinge� (dashed line

for m in Fig. 3) of a tube with length L ¼ 450 mm undergoing (a) global collapse (V0 ¼ 8:5 m/s) and (b) progressive buckling (V0 ¼ 8:75

m/s).
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Fig. 3. Buckling modes. (a) a tube with L ¼ 300 mm made from material Mat3; V0 ¼ 2:5 m/s, (b) a tube with L ¼ 450 mm made from

material Mat2; V0 ¼ 6 m/s.
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global (lower velocity) and progressive (higher velocity) buckling, there is a distinguishing compressive
phase, which lasts approximately 1.0 ms. The lateral displacements associated with all locations start to

grow simultaneously, however, local buckling (a wrinkle) near to the proximal end of the tube develops

more rapidly as indicated by the lateral displacement–time and the velocity–time histories in Fig. 1(c) and

(d) (label t), which indicates progressive buckling for an impact with V0 ¼ 8:75 m/s. In contrast, global

collapse occurs for V0 ¼ 8:5 m/s, when the growth of the lateral displacement at the location of the �bending
hinge� (label m in Fig. 1(a)) overtakes the increase of the local displacements.

The radial velocities associated with the maximum radial displacement of the first wrinkle and the lateral

velocity at the location of the global �bending hinge� presented in Fig. 1(b) and (d) for global bending and
progressive buckling, respectively, show that in both cases, the maximum lateral velocity is associated with

the corresponding buckling pattern. It is evident that larger velocities develop at the tip of the local wrinkle

(label t in Fig. 1(d)) in the case of progressive buckling while the maximum lateral velocity for a global

collapse is observed at the location of the global �bending hinge� (label m in Fig. 1(b)).

Thus, the selection of the particular buckling pattern is a typical bifurcation problem as indicated by the

phase-plane diagrams in Fig. 2. At the initiation of buckling, both modes of collapse have comparable
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velocities but a rapid increase of the velocity at the location of the particular unstable point (m in Fig. 2(a)

or t in Fig. 2(b)) occurs, which leads to the development of large radial (progressive) or lateral (global)

displacements. The displacements at points t and m in Fig. 2(a) and (b), respectively, do not grow with time

as the corresponding velocities vanish as soon as the buckling pattern is selected.
An initial compression phase is a characteristic of the response of shells that buckle plastically and it can

cause variation of the velocities at the outset of the second phase of deformation (global bending or

progressive buckling). The influence of the material characteristics and loading parameters on these

velocities is discussed in Sections 4.1 and 4.2.
3. Critical buckling length

It is interesting to observe that, except for some shells where L ¼ 300 mm, the majority of the experi-

mental and numerical results in Part I (Karagiozova and Alves, 2004) indicate that global buckling starts to

develop in a mode that has the characteristics of the second axial buckling mode (a �rod� mode). Some tubes

develop later local wrinkles as well, which form the final mixed mode shape. Examples of the buckling

patterns of a 300 and 450 mm long tubes are shown in Fig. 3. The buckling shape in Fig. 3(a) is close to the

final shape of a short tube under a low velocity impact while the buckling shape in Fig. 3(b) represents
a typical shape at the initiation of global bending of longer tubes when the impact velocity increases

(Karagiozova and Alves, 2004).

These buckling patterns suggest that �rod� models shown in Fig. 4 can be used to analyse the influence of

the material parameters on the critical buckling lengths that mark the transition between progressive

buckling and global collapse. The models consist of incompressible rods with a distributed mass m ¼ M=L.
It is assumed that the material is elastic–plastic with linear strain hardening, which is small, so that the rods

in the models are subjected to a constant axial force, Ar0. The cross-section area, A, of the rod and the

corresponding inertia moment are equal to the cross-section area and the corresponding inertia moment,
pR3h, of an actual shell, respectively. The experimental results and numerical simulations show that plastic

bending deformations occur near to the shell ends as shown in Fig. 3. In the models, these deformations are

taken into account as plastic bending moments in order to represent more realistically the boundary
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Fig. 4. �Rod� modes for global bending of a circular shell; (a) Euler mode, (b) and (c) three-link models representing axial buckling

modes.
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conditions. It is assumed that the models in Fig. 4 are valid for small angles of rotation, therefore they can

describe only the initiation of buckling but not the developed shapes of actual shells.

3.1. Euler buckling mode

The equation of motion of the model in Fig. 4(a) can be obtained from moment equilibrium as shown

in Fig. 14 as
mL3

24
€uþ 3c1

�
� Ar0L

2

�
u ¼ 0; ð1Þ
where c1 is a bending rigidity coefficient (see Section A.1)
c1 ¼
4EhpR3h

ð1þ
ffiffiffi
k

p
Þ2L

; ð2Þ
Eh is the hardening modulus and k ¼ Eh=E. Thus, Eq. (1) can be presented as
€u� 24

qL2
r0

 
� 12EhR2

ð1þ
ffiffiffi
k

p
Þ2L2

!
u ¼ 0: ð3Þ
It is evident that a positive coefficient before u in Eq. (3) determines a solution with a hyperbolic

function, therefore the critical length of a tube to buckle in an Euler mode is
Lcr ¼
2R

ð1þ
ffiffiffi
k

p
Þ

3Eh

r0

� �1=2

: ð4Þ
According to Eq. (4), the critical lengths of tubes with cross-section characteristics 2R ¼ 50:8 mm, h ¼ 2

mm and made from materials Mat1, Mat2 and Mat3 are 114.8, 148.7 and 190.7 mm, respectively. Since the

compressibility of the tubes is not taken into account, these values can be considered as a lower bound for
the critical lengths of the corresponding tubes when subjected to static axial loads.
3.2. Second axial buckling mode

Long tubes can develop buckling modes higher then the Euler static buckling mode when subjected to an

axial dynamic load (e.g. buckling modes that cause global collapse with two or more �bending hinges� due to
the ovalization of the tube cross-section). In particular, shapes with characteristics of the second buckling

mode have been observed both experimentally and numerically. The three-link models in Fig. 4(b) and (c)
can represent the second axial buckling mode of a shell and shapes between the Euler and second buckling

mode depending on the angles u1 and u2.

Equilibrium of moments and forces acting on the two configurations (Fig. 15) is used to obtain the

equations of motion for the configuration in Fig. 4(b),
2mL3

81
€u1 þ

mL3

162
€u2 þ 6c

�
� 2L

3
Ar0

�
u1 � 4c

�
� L

3
Ar0

�
u2 ¼ 0; ð5Þ

mL3

162
€u1 þ

2mL3

81
€u2 � 4c

�
� L

3
Ar0

�
u1 þ 6c

�
� 2L

3
Ar0

�
u2 ¼ 0 ð6Þ
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and for the configuration in Fig. 4(c),
2mL3

81
€u1 �

mL3

162
€u2 þ 6c

�
� 2L

3
Ar0

�
u1 � 4c

�
� L

3
Ar0

�
u2 ¼ 0; ð7Þ

mL3

162
€u1 �

2mL3

81
€u2 � 4c

�
� L

3
Ar0

�
u1 � 6c

�
� 2L

3
Ar0

�
u2 ¼ 0; ð8Þ
where c is a bending rigidity coefficient (see Eq. (A.16))
c ¼ 6EhpR3h

ð1þ
ffiffiffi
k

p
Þ2L

: ð9Þ
If the solution for u1 and u2 is sought in a form
u1 ¼ D1 sinðx2t þ bÞ; u2 ¼ D2 sinðx2t þ bÞ; ð10Þ
the condition for a non-trivial solution of each system of differential equations that describes the motion

of the models in Fig. 4(b) and (c) is obtained as a quadratic equation with respect to ðxÞ2,
x4 � 2:162

15mL3
½28c� 3Ar0L�x2 þ 5:162

152m2L6
½60c2 � 16cAr0Lþ ðAr0LÞ2� ¼ 0 ð11Þ
when substituting Eq. (10) into Eqs. (5)–(8). The solutions for u1 and u2 are characterised either by trig-

onometric or hyperbolic functions depending on the signs of the two roots of Eq. (11) (see Eq. (A.14)).

An unstable response occurs when ðx1Þ2 > 0 and ðx2Þ2 < 0 or ðx1Þ2 > 0 and ðx2Þ2 > 0, so that the two roots

of Eq. (11) determine two critical lengths for dynamic buckling associated with the three-link model as
Lcr;1 ¼
R

ð1þ
ffiffiffi
k

p
Þ

18Eh

r0

� �1=2

ð12Þ
and
Lcr;2 ¼
R

ð1þ
ffiffiffi
k

p
Þ

30Eh

r0

� �1=2

: ð13Þ
According to Eq. (12), the critical lengths for buckling of tubes with cross-section characteristics

2R ¼ 50:8 mm, h ¼ 2 mm and made from materials Mat1, Mat2 and Mat3 are 140.5, 180.9 and 233.5 mm,

respectively. According to Eq. (13), the critical lengths for the development of a second buckling mode in

these tubes are 181.4, 233.5 and 301.5 mm, respectively. The above critical values (except for Mat3) are

smaller than the shortest tubes of 300 mm, which are analysed numerically in Part I (Karagiozova and
Alves, 2004). This explains why all examined 300 mm tubes can collapse in a global mode when subjected to

a sufficiently low impact velocity (Fig. 5).

Eqs. (12) and (13) show that the critical buckling lengths of a circular shell with given cross-section

characteristics are functions of the ratio Eh=r0. This dependence explains the different buckling modes that

are observed in tubes with equal lengths but made from different materials when subjected to a low velocity

impact. The Euler buckling mode occurs in a 300 mm long tube made from material Mat3 when subjected

to a 2.5 m/s impact. In way of contrast, the 300 mm long tubes made from materials Mat1 and Mat2

develop �bending hinges� at locations that are the characteristic of the second buckling mode. These tube
start to buckle in the mode shown in Fig. 4(c) but the more rapid development of the �bending hinge� that is
closer to the proximal end of the shell causes the final buckling shapes presented in Fig. 5(a) and (b). The
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Fig. 5. Buckling shapes of 300 mm long tubes depending on the material properties. (a) Mat1, (b) Mat2, (c) Mat3.
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length of 300 mm is between the two critical values for material Mat3, so that this shell buckles in an Euler

mode. The length of 300 mm is larger than the second critical lengths for both Mat1 and Mat2, therefore

these shells tend to develop the second buckling mode.
4. Tubes as Type II structures––two phase deformation concept

The critical lengths for global bending are obtained in Section 3 assuming that a shell deforms as an

incompressible rod. In practice, however, shells much longer than Lcr;2 (Eq. (13)) may not develop global

bending, which is evident from the numerical and experimental results presented in Part I (Karagiozova

and Alves, 2004). The stabilisation of the response is caused by the increase of the impact velocity, which

influences the shell compression (reduction of the overall length) and the speed of the development of a

local wrinkle. Moreover, the interaction between the inertia of the striker and shell can influence the
buckling pattern due to the variation of the absorbed energy during the initial compression phase.

The two phase deformation concept provides a tool for an analysis of �Type II� structures. This approach
was proposed by Tam and Calladine (1991) to explore the velocity and mass sensitivity of a simple plate

structure and it is adopted here for the analysis of a tube response.
4.1. Phase 1––compression

The present analysis is focused on the second axial buckling mode that can develop in the case of global

bending. The corresponding model shown in Fig. 6 consists of three rods, each of length L=3 with a dis-

tributed mass m ¼ M=L. The rods are axially compressible by an amount D=3, but do not deform due to the

bending moments. This model is similar to the one shown in Fig. 4(c) but takes into account the com-

pressibility of the shell.

The initial imperfections of the model have the expected buckling mode shape, w0 ¼ u0L=3, so that

equal, but opposite sign magnitudes at the end of the first and second link are assumed. The model in Fig. 6
is struck by a mass, G with an initial velocity, V0 that causes an axial displacement, u, at the proximal end

(see Section A.2.1).
u ¼ Lðu2
1 þ u2

2 þ u1u2 � 3u2
0Þ=3þ D: ð14Þ
The deformed shape of the shell in Fig. 3(b) suggests that the angles of rotation ui can be assumed equal

ðu1 ¼ u2 ¼ uÞ during the compression phase, so that the vertical displacement of the proximal end of the
model is
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u ¼ Lðu2 � u2
0Þ þ D ð15Þ
and the corresponding axial velocity is
_u ¼ 2Lu _uþ _D: ð16Þ

For small angles of rotation u ¼ w=ðL=3Þ, therefore
Vmodel ¼ _u ¼ 18

L
w _wþ _D ¼ V1 þ _D; ð17Þ
when adopting
V1 ¼
18

L
w _w: ð18Þ
If the angles of rotation are equal, Eqs. (7) and (8) reduce to a single equation of motion
mL3

54
€uþ ð10c� Ar0LÞu ¼ 0 ð19Þ
and for small angles u
€w ¼ 54r0

qL2
1

 
� 30EhR2

r0ð1þ
ffiffiffi
k

p
Þ2L2

!
w: ð20Þ
The solution of Eq. (20) is
w ¼ w0 coshðctÞ ð21Þ

when applying the initial conditions wð0Þ ¼ w0 and _wð0Þ ¼ 0 and where
c ¼ 3

L

ffiffiffiffiffiffiffi
6r0

q

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 30EhR2

r0ð1þ
ffiffiffi
k

p
Þ2L2

s
ð22Þ
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and q is the material density. Thus, the axial velocity of the model due to the rotations of the links is
Fig. 7.

r0 ¼ 1

of the
V1 ¼
9cw2

0

L
sinhð2ctÞ: ð23Þ
The equation of motion of the striker is
G _V ¼ �Ar0; ð24Þ
so that the corresponding velocity is
V ¼ V0 �
Ar0

G
t: ð25Þ
A plot of the velocities V1 and V given by Eqs. (23) and (25) is presented in Fig. 7 for a shell with

2R ¼ 50:8 mm, h ¼ 2 mm and L ¼ 450 mm. The intersection of the two curves defines the configuration at
the end of the initial compression phase at t ¼ t� since Eq. (17) gives _D ¼ 0. The area between the ordinate

axis and the two curves ðV � V1Þ in Fig. 7 gives the total shortening of the model, which is proportional

to the absorbed energy during the first phase (Tam and Calladine, 1991).

According to Eqs. (23) and (25), the proportion of the initial impact energy absorbed during the initial

compression phase depends on both the material characteristics and loading parameters. For the same

impact mass, G, and velocity V0, a material having a lower yield stress will absorb a smaller proportion of

the initial energy thus leaving more energy for the bending phase. Therefore, a larger proportion of the

initial kinetic energy remains for the bending phase of a shell made from material Mat3 due to the lower
flow stress compared to material Mat2. Moreover, the initial momentum ðGV �Þ at the outset of the bending
phase is higher in a tube made from material Mat3, which results in a higher initial angular velocity _uðt�Þ at
the outset of the bending phase.

It is evident in Fig. 3 that �plastic hinges� develop due to the ovalisation of the shell cross-section, so that

energy proportional to the plastic moments Mpðu; r0Þ dissipates during the phase of global collapse

(Wierzbicki and Sinmao, 1997). Thus, bending deformations develop more rapidly in a shell made from

material Mat3 due to the smaller bending resistance to a global collapse.

This scenario predicts that if a tube made from material Mat2 buckles progressively at the transition
impact velocity, the same geometry tube made from material Mat3 will buckle globally when subjected to
0
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Theoretical predictions for velocities V1 and V according to Eqs. (23) and (25) for a model of a tube with L ¼ 450 mm and

75 MPa under an impact with V0 ¼ 8:75 m/s, G ¼ 120 kg in comparison with the numerical prediction for the axial velocity

proximal end, Vnumerical, of the same tube; w0 ¼ 0:0005L.
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an impact with the same loading parameters. In order to stabilise the response of a tube made from material

Mat3, the impact velocity should be increased, which causes additional energy to be absorbed during the

initial compression phase. The increase of the initial velocity leads to a decrease of the striking mass, which

will additionally increase the proportion of the absorbed energy during the compression phase according to
Eq. (25). In this way, the initial momentum ðGV �Þ decreases, which results in a lower initial angular velocity

for the bending phase.

The variation of the striker velocity, V , that is associated with the transition velocity for shells made

from Mat2 (r0 ¼ 175 MPa) and Mat3 (r0 ¼ 105 MPa) and the variation of the axial velocity of the model

in Fig. 6 with time, V1, are illustrated in Fig. 8 for particular shells having lengths of 450 mm (Fig. 8(a)) and

630 mm (Fig. 8(b)). It is evident that at the transition velocities, the compression phase in shells with equal

lengths lasts longer in a shell made from the material with a lower yield stress provided that both materials

have identical strain hardening characteristics. During this time, the absorbed energy continues to increase,
thereby approaching the energy absorbed during the compression phase of a shell with a higher yield stress

(Table 1), which commences to bend more rapidly. One can see that the bending energy, Tb ¼ GðV �Þ2=2,
decreases when increasing the impact velocity and length of the shells for both materials.

The present analysis shows that smaller momentum ðGV �Þ should be achieved in a shell made from

material Mat3 in comparison to a shell made from Mat2 (Table 1) in order to stabilize the response. These

smaller values are necessary for a stabilization due to the smaller resistance to a global collapse of a shell

made fromMat3. This explains the departure (from each other) of the curves that mark the critical buckling

lengths for materials Mat2 and Mat3 in Fig. 6, Part I (Karagiozova and Alves, 2004) for impact velocities
higher than 8 m/s.
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Fig. 8. Variation of the velocity of the striker and axial velocity of the model in Fig. 6 with time for a shell with h ¼ 2 mm, R ¼ 25 mm;

Mat2––dashed line, Mat3––solid line, (a) L ¼ 450 mm, (b) L ¼ 630 mm.

Table 1

Comparison between the kinetic energies available for the bending phase, Tb, at some transition impact velocities depending on the

material yield stress and loading parameters when using Eqs. (23) and (25) to obtain V � and t�; T0 ¼ 5 kJ

L (mm) V0 (m/s) G (kg) Material V � (m/s) t� (ms) Tb (J) GV � (kgm/s)

450 8.50 138.4 Mat2 8.04 1.183 4473.2 1112.8

450 10.5 90.70 Mat3 9.87 1.687 4415.2 894.9

540 9.25 116.87 Mat2 8.63 1.348 4352.1 1008.6

540 12.75 61.52 Mat3 11.77 1.830 4260.7 724.1

630 9.75 105.19 Mat2 8.96 1.528 4222.4 942.5

630 14.25 49.25 Mat3 12.87 2.053 4082.4 633.8
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The analysis of the response of the model in Fig. 6 in terms of energy absorption shows that the initial

compression phase in a circular tube plays a significant role for the buckling transition causing variation

of the initial conditions for the bending phase. This model reveals the importance of the material

yield stress and inertia properties of the striker for the energy partitioning in dynamically loaded circular
shells.
4.2. Phase 2––buckling

4.2.1. A simple model for the development of a single wrinkle

The rapid development of local wrinkling is another factor that stabilises the response of a tube sub-

jected to an axial impact thus increasing the critical length for buckling transition beyond Lcr;2 (Eq. (13)).

The numerical simulations show that the material strain hardening properties influence the critical shell

length for transition between the two buckling modes (Fig. 6 in Part I (Karagiozova and Alves, 2004)). The

smaller bending rigidity of material Mat1 in comparison to material Mat2 allows wrinkles to develop more
rapidly soon after the impact, which stabilises the response, leading the shell to absorb the initial kinetic

energy also by folding.

A simplified model for the initiation of progressive buckling (a �folding model�) can be developed

assuming that a single wrinkle occurs initially while the rest of the shell stays undeformed (Alexander,

1969). The shell thickness is small in comparison to the other shell dimensions, so that the plane stress

approximation gives an adequate description of the stress state in a circular shell. The proposed model aims

to explore the influence of material hardening and the loading conditions on the bending deformation

associated with progressive buckling.
It is observed experimentally (Fig. 4 (upper row) in Part I (Karagiozova and Alves, 2004)) that the first

wrinkle in a circular shell usually develops axisymmetrically, so that this assumption is used for the model

in Fig. 9 to represent a single wrinkle. The links of the model represent a part of a shell strip with length

2l (l ¼ 1:34
ffiffiffiffiffiffi
Rh

p
(Jones, 1989)) and thickness h. The mass of the model, m�, is equal to the mass per unit

circumferential length of a single axisymmetric wrinkle in an actual shell and m� ¼ 2lqh. It is assumed

that the links are incompressible and rotate only as rigid bodies. The material properties of a shell are

modelled by the characteristics of the springs in each cell that represent the axial, F s
i , and radial forces, F c

i ,

where i ¼ 1; 2; 3. The strain distribution across the shell thickness is modelled by a number of springs
k ¼ 1; . . . ; 2nt þ 1 in each cell, where the number of the discrete intervals is 2nt.
l

G1 V0

Φ

F s
F c

R

ik
ik

Fig. 9. Model for the buckling phase (first local wrinkle for progressive buckling).
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The equation of motion of the model in Fig. 9 is (see Section B.1)
€/ ¼ � 2l2ðm� þ G1Þ _/2 sin/ cos/þM1ðtÞ þM2ðtÞ þ 0:5F cðtÞl2 cos/
2l2½m�=3þ ðm� þ G1Þ sin2 /�

; ð26Þ
where G1 ¼ G=2pR, M1ðtÞ and M2ðtÞ are the bending moments. Bending moments M1 are associated with

the top and bottom cells ði ¼ 1; 3Þ while M2 is defined for the middle cell ði ¼ 2Þ. F c is a distributed force

along l, which accounts for the circumferential forces F h
ik and is defined by the forces F c

ik ¼ F h
ik=R (see Section

B.1).

It is assumed that the model in Fig. 9 is subjected to an impulsive load I ¼ G1V0, so that the initial

conditions can be obtained using Lagrange�s equation, which gives
_/jt¼0 ¼
G1V0 sin/0

½m�=3þ ðm� þ G1Þ sin2 /0�l
; ð27Þ
where /0 is the initial imperfection taken as /0 ¼ w0=l.
The material of the model in Fig. 9 is elastic–plastic with linear strain hardening, Eh, in the true stress–

true strain domain. The Tresca yield criterion is used to obtain explicit expressions for the stress increments

drx and drh as functions of the strain increments in a circular shell, dex and deh (Karagiozova and Jones,

2000). The strains in the top and bottom cells are defined as
exðzÞ1 ¼ exðzÞ3 ¼ �z sin/=l; eh ¼ 0; ð28a;bÞ
while for the middle cell
exðzÞ2 ¼ 2z sin/=l; eh ¼ w=R; w ¼ l sin/ ð29a;bÞ
for �h=26 z6 h=2 and /0 6/ < p=2. Therefore, the axial strains in the discrete points across the cells of

the model in Fig. 9 are
exðzkÞ1 ¼ exðzkÞ3 ¼ �ðk � nt � 1Þh
2ntl

sin/; k ¼ 1; . . . ; 2nt þ 1 ð30Þ
and
exðzkÞ2 ¼
ðk � nt � 1Þh

ntl
sin/; k ¼ 1; . . . ; 2nt þ 1: ð31Þ
The expressions drx ¼ f1ðdex; deh; r0;E;EhÞ and drh ¼ f2ðdex;deh; r0;E;EhÞ for each side of the Tresca

hexagon (see Section B.2) are used to calculate the generalised forces M1, M2 and F c as
dMi ¼ cos/
h
2nt

X2ntþ1

k¼1

ðk � nt � 1ÞdF s
ik; dF s

ik ¼
h

ð2nt þ 1Þ dr
x
ik; i ¼ 1; 2; ð32Þ

dF c
i ¼

X2ntþ1

k¼1

dF c
ik ¼

1

R

X2ntþ1

k¼1

dF h
ik; dF h

ik ¼
h

ð2nt þ 1Þ dr
h
ik; i ¼ 1; 2: ð33Þ
It is assumed that the buckling commences after compression in the plastic range, so that the following

initial conditions are adopted for the analysis of the response of the buckling model
rx
ikðt ¼ 0Þ ¼ �r0; rh

ikðt ¼ 0Þ ¼ 0; i ¼ 1; 2; 3; k ¼ 1; . . . ; 2nt þ 1: ð34Þ
Eq. (26) with the initial condition (27) is solved numerically using the NAG Fortran Library when the
variation of the bending moments Mi and the radial force F c with time are calculated at the discrete

intervals ðDtÞ using Eqs. (32) and (33).
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4.2.2. Influence of the material strain hardening and loading parameters

It is evident from Eqs. (26)–(34) that the material characteristics (the yield stress and strain hardening)

and the initial conditions for the bucking phase influence the response of the model in Fig. 9. Comparison

between the development of the lateral displacement w for materials Mat1 ðk ¼ 0:0043Þ and Mat2
ðk ¼ 0:007Þ is shown in Fig. 10 where it is evident that the lower hardening characteristics contribute to a

more rapid buckling.

It should be noted that the model for the buckling phase does not take into account the initial com-

pression and the reduction of the axial velocity, so that V0 is used in the calculations instead of V � obtained

in Section 4.1. In fact, the actual initial velocity for the buckling phase of a shell made from material Mat1

is higher in comparison to the velocity in a Mat2 shell. The higher initial velocity at the outset of the

buckling phase also contributes to the more rapid development of the lateral displacements and the for-

mation of a wrinkle, which stabilises the tube response. This behaviour indicates that a local wrinkle can
develop more rapidly in a shell made from material Mat1 leading eventually to a stabilisation of the re-

sponse for lower impact velocities in comparison to a shell made from Mat2 as it is indicated in Fig. 6,

Part I (Karagiozova and Alves, 2004).

In this scenario, the bending rigidity can influence the location of the first wrinkle in identical shells

subjected to similar loading conditions but made from different materials. A 5 kJ axial impact on a 360 mm

long shell causes the first wrinkle to develop near to the proximal end of a shell made from material Mat1,

while the first wrinkle in a shell made from material Mat2 develops near to the distal end (Fig. 11).

The influence of the initial conditions on the growth of the lateral displacements, w, of the model in Fig. 9
is illustrated in Fig. 12(a) for impacts with constant initial kinetic energy, but applied with different impact

velocities and assuming the characteristics of a shell made from material Mat1. One can see that a larger

mass applied with a lower initial velocity causes more rapid development of the bending deformations. This

response could be attributed to inertia effects in a shell only but, in fact, the inertia of the striking mass

influences the response as well. The model buckles more rapidly when struck by a larger mass (G ¼ 219:48
kg vs. G ¼ 130 kg), even if both impacts are applied with an equal initial velocity of 8.75 m/s (Fig. 12(b)).

The initial condition (Eq. (27)) for the response of the model in Fig. 9 suggests that the initial angular

velocity _/ is constant for a constant initial momentum GV0. It is evident in Fig. 12(c) that, even if subjected
to impacts with equal initial momentum, the model in Fig. 9 buckles more rapidly under the impact with

G ¼ 219:48 kg, V0 ¼ 8:75 m/s. This response is caused by the larger bending deformations that develop soon

after an impact with a larger mass.

The influence of the initial velocity for a constant striking mass on the bending phase is illustrated in

Fig. 12(d). An impact with G ¼ 219:48 kg and V0 ¼ 8:75 m/s causes more rapid development of the lateral

displacements w in comparison to the 6.75 m/s impact. However, the maximum displacement w ¼ l is

achieved at the same time in both cases.
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Fig. 10. Development of the lateral displacement, w, of the model in Fig. 9 depending on the material hardening, h ¼ 2 mm, R ¼ 25

mm; V0 ¼ 8:75 m/s, G ¼ 130:61 kg.
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Fig. 11. Location of the wrinkles depending on the material hardening. (a) Mat1: Eh ¼ 300 MPa, (b) Mat2: Eh ¼ 500 MPa.
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Fig. 12. Development of the lateral displacement, w, in the model in Fig. 9 with h ¼ 2 mm, R ¼ 25 mm and material Mat1. (a) Equal

initial kinetic energy, T0 ¼ 5 kJ, (b) Equal initial velocity V0 ¼ 8:75 m/s, (c) Equal initial momentum GV0 ¼ 1481:14 kg.m/s, (d)

Constant striking mass G ¼ 219:48 kg.
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The speed of the development of a local wrinkle can be a factor causing an anomalous response for some
impact velocities, e.g. in Fig. 11 in Part I (Karagiozova and Alves, 2004). An impact with V0 ¼ 6:75 m/s and

G ¼ 219:48 kg causes the first wrinkle to develop near to the proximal end (Fig. 11(b) in Part I (Karagiozova

and Alves, 2004)). However, an impact with a smaller mass (G ¼ 177:8 kg) and V0 ¼ 7:5 results in a lower

speed of the development of a wrinkle near to the proximal end due to the increased inertia. Meanwhile, the

global lateral displacements continue to grow, so that the shell buckles in a global mode (Fig. 11(c) in Part I

(Karagiozova and Alves, 2004)).

4.3. Influence of the strain rate effects on the local buckling phase

The numerical simulations presented in Part I (Karagiozova and Alves, 2004) reveal that the strain rate
effects cause a destabilisation of a circular shell subjected to an axial impact. A reason for such kind of
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response can be related to the variation of the hardening characteristics during the buckling phase, which

controls the development of a local wrinkle. In this Section, the effect of the material strain rate sensitivity

on the buckling phase is estimated for the case of progressive buckling of a shell with L ¼ 450 mm made

from material Mat2 and subjected to an impact with V0 ¼ 8:75 m/s and G ¼ 219:48 kg.
The displacement–time, wðtÞ and velocity–time histories, _wðtÞ, associated with the tip of the local wrinkle

near to the proximal end of a shell (Fig. 1(c) and (d)) are used to estimate the effects of the strain rate on

buckling when the Cowper–Symonds equation is employed with D ¼ 1288000 s�1 and q ¼ 4 (Alves, 2000;

Jones, 1974). The same parameters are used in Part I (Karagiozova and Alves, 2004) to simulate the strain

rate effects on the dynamic buckling transition. It is evident from these figures that the compressive phase

continues until t� � 0:9 ms when a rapid growth of the radial displacement, w, commences. After this time,

the bending deformations dominate, so that it can be assumed that, after the compressive phase, the stress-

state is characterised by rx ¼ 0, rh > 0. Then, it can be shown that re ¼ rh and _ee ¼ _eh when using the
relationships
Fig. 13

L ¼ 45

V0 ¼ 8
rx ¼
2re

3 _ee
ð2 _ex þ _ehÞ; rh ¼

2re

3 _ee
ð _ex þ 2 _ehÞ; ð35Þ
and
_ee ¼
2ffiffiffi
3

p ð _e2x þ _e2h þ _ex _ehÞ1=2 ð36Þ
for a plane stress problem and the von Mises yield criterion.

The circumferential strain is eh ¼ w=R, therefore _eh ¼ _w=R. Further, the dynamic equivalent stress can be

obtained from the Cowper–Symonds equation as
rdynamic
e ðeeÞ ¼ rstatic

e ðeeÞ 1

2
4 þ _w

RD

 !1=q
3
5; ð37Þ
where
rstatic
e ðeeÞ ¼ rhðehÞ ¼ r0 þ Eheh: ð38Þ
The stress–strain histories during the bending phase for the loading parameters in Fig. 1(c,d) are shown

in Fig. 13 for a strain rate insensitive material (Mat2) and a strain rate sensitive material according to
170

195

220

245

270

0.01 0.03 0.05 0.07 0.09 0.11

Equivalent strain

E
qu

iv
al

en
t s

tr
es

s 
(M

P
a)

Material Mat2
(numerical)

Strain rate sensitive
materialDynamic strain

hardening

. Variation of the stress with strain at the tip of a local wrinkle during buckling of a shell with 2R ¼ 50:8 mm, h ¼ 2 mm and

0 mm made of material Mat2 (numerical simulation) and when taking into account the strain rate effects according to Eq. (37);
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D. Karagiozova, M. Alves / International Journal of Solids and Structures 41 (2004) 1581–1604 1597
Eq. (37). It is evident that the initial bending starts to develop with considerably higher strain hardening

when the strain rate effects are taken into account. The initial strain hardening modulus is estimated as

Eh ¼ 2030 MPa (k ¼ 0:029), which is four times larger than the strain hardening modulus Eh ¼ 500 MPa

for Mat2. It was already shown in Section 4.2.2 that the increase of the strain hardening delays the
development of a local wrinkle. Therefore, if a shell made from a strain rate insensitive material buckles

progressively at a transition impact velocity, it is likely to respond by a global bending when the material

exhibits strain rate effects, as shown in Figs. 13 and 14 in Part I (Karagiozova and Alves, 2004).
5. Conclusions

The mechanics of the transition from dynamic progressive buckling to global bending collapse of axially

loaded circular tubes described in Section 2 characterises all the tubes analysed in the present study and

discussed in Part I (Karagiozova and Alves, 2004) regardless of the tube lengths, impact velocity and

material properties. This type of response allowed to employ the two-phase concept for deformation of

circular tubes in order to provide some insight into the dynamic buckling transition phenomenon. The

influence of the material properties and loading parameters on the selection of the collapse mode of tubes
with a particular ratio 2R=h is analysed using two simple models. The first model is associated with the

compression phase in the case of a global collapse and the second one models the development of a single

wrinkle when a circular shell starts to buckle progressively.

The initial compression phase is governed primarily by the material yield stress, inertia properties of the

shell and the interaction between the striker and shell as shown in Section 4.1. This phase causes variation

of the initial conditions for the subsequent phase of bending or folding depending on the energy absorbed

by compression. Thus, materials having higher yield stress are desirable in order to increase the proportion

of the external impact energy absorbed in the initial compression phase and, perhaps, to increase the
bending rigidity during the subsequent ovalisation of the tube cross-section in the case of global bending

(Wierzbicki and Sinmao, 1997).

The folding phase is clearly dependent on the material strain hardening that controls the speed of the

development of the first local wrinkle, as shown in Section 4.2.2. A delay of the development of a local

wrinkle in a tube would favour a �rod� buckling mode and consequently a global collapse. Thus, materials

with low strain hardening characteristics could have a better performance by causing a rapid development

of the first wrinkle and therefore stabilisation of the response. It is shown in Section 4.3 that larger material

strain hardening during the early stage of the shell response, which is characteristic of strain rate sensitive
materials causes a destabilisation of the shell by decreasing the speed of the development of the first

wrinkle, which then favours global bending.

The theoretical analysis of the influence of various factors on particular phases of the dynamic buckling

of long tubes presents an explanation for some of the observed phenomena in Part I (Karagiozova and

Alves, 2004). However, the mode interaction, which is an essential feature of the buckling transition re-

mains to be explored and this will be the subject of a further study.
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Appendix A. Global bending

A.1. Euler buckling mode

The forces and moments that act on a two-link model are shown in Fig. 14. The bending moments at A,
B and C are characterised by a bending rigidity c1, which is calculated when using the reduced modulus,

Er ¼ 4EEh=ð
ffiffiffiffi
E

p
þ

ffiffiffiffiffi
Eh

p
Þ2, for a material with linear strain hardening. The bending moment at location B in

Fig. 14 is
MB ¼ ErIj; ðA:1Þ

where the inertia moment I ¼ pR3h and the curvature at this point is taken as j ¼ 2u=L (Wierzbicki and
Sinmao, 1997), so that
c1 ¼
4EhpR3h

ð1þ
ffiffiffi
k

p
Þ2L

: ðA:2Þ
A.2. Second axial buckling mode

A three-link model under axial compression can develop either of the shapes shown in Fig. 4. The

equations of motion of links AB and CD in Fig. 15 are obtained from moment equilibrium with respect to
points A and D, respectively
mL3

81
€u1 þ cð3u1 � u2Þ �

PL
3
u1 þ X1

L
3
¼ 0 ðA:3Þ
and
mL3

81
€u2 þ cð3u2 � u1Þ �

PL
3
u2 þ X2

L
3
¼ 0: ðA:4Þ
The equation of motion of link BC is obtained from moment equilibrium with respect to the center of the

mass
mL3

324
ð€u1 � €u2Þ þ cð2u1 � u2Þ � cð2u2 � u1Þ �

PL
3
ðu1 � u2Þ þ X1

L
6
� X2

L
6
¼ 0 ðA:5Þ
A

B

C

P

P

P

ϕ

ϕ

L/2

L/2

mL3ϕ/24

mL3ϕ/24

MA=c1ϕ

MB =2c1ϕ

MC = c1ϕ

MB=2c1ϕ

..

Fig. 14. Forces and moments in a �rod� model representing an Euler buckling mode.
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and the sum of the projection of all forces on the horizontal axis is
mL2

18
ð€u1 þ €u2Þ � X1 � X2 ¼ 0: ðA:6Þ
The equations of motion for the shape in Fig. 15(a) are obtained as
2mL3

81
€u1 þ

mL3

162
€u2 þ 6c

�
� 2L

3
P
�
u1 þ 4c

�
� L

3
P
�
u2 ¼ 0 ðA:7Þ
and
mL3

162
€u1 þ

2mL3

81
€u2 � 4c

�
� L

3
P
�
u1 þ 6c

�
þ 2L

3
P
�
u2 ¼ 0; ðA:8Þ
when determining the forces X1 and X2 from Eqs. (A.5) and (A.6) and substituting the corresponding

expressions into Eqs. (A.3) and (A.4).

The equations of motion of the model in Fig. 15(b) are obtained using the equilibrium of moments and
forces as
2mL3

81
€u1 �

mL3

162
€u2 þ 6c

�
� 2L

3
P
�
u1 � 4c

�
� L

3
P
�
u2 ¼ 0 ðA:9Þ
and
mL3

162
€u1 �

2mL3

81
€u2 � 4c

�
� L

3
P
�
u1 � 6c

�
þ 2L

3
P
�
u2 ¼ 0: ðA:10Þ
The solution for u1 and u2 for the systems of Eqs. (A.7)–(A.10) can be sought in a form
u1 ¼ D1 sinðx2t þ bÞ; u2 ¼ D2 sinðx2t þ bÞ: ðA:11Þ
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After substituting these expressions into the corresponding equations, the condition for a non-trivial

solution of either of the systems (A.7) and (A.8) or (A.9) and (A.10) is obtained as,
6c� 2PL
3

� �
� 2ml3

81
x2 4c� PL

3

� �
� ml3

162
x2

� 4c� PL
3

� �
� ml3

162
x2

h i
� 6c� 2PL

3

� �
� 2ml3

81
x2

h i
������

������ ¼ 0; ðA:12Þ
which gives
x4 � 2:162

15mL3
½28c� 3PL�x2 þ 5:162

152m2L6
½60c2 � 16cPLþ ðPLÞ2� ¼ 0 ðA:13Þ
with roots
ðx1Þ2 ¼
54

15mL3
ð6c� PLÞ; ðx2Þ2 ¼

5:54

15mL3
ð10c� PLÞ: ðA:14Þ
In Eqs. (A.3)–(A.14), P ¼ Ar0 and c is a bending rigidity coefficient, which is obtained when using
the reduced modulus, Er, for a linear strain hardening material. In Fig. 15(a,b),
MB ¼ ErIj ðA:15Þ

where the curvature j is taken as j ¼ a=ð2L=3Þ, where a is the angle between two joint links, so that
c ¼ 6EhpR3h

ð1þ
ffiffiffi
k

p
Þ2L

: ðA:16Þ
A.2.1. Vertical displacements for the three-link model
The vertical displacement of the proximal ends of the models in Fig. 4(b) and (c) can be expressed as
u ¼ f½L cosu01 � ðL� DÞ cosu1� þ ½L cosu02 � ðL� DÞ cosu2� þ ½L cosw0 � ðL� DÞ cosw�g=3;
ðA:17Þ
assuming that these models have certain initial imperfections. The angles u01 and u02 are the initial angles
of links AB and CD, respectively and the initial angle of the middle link, w0, is a function of u01 and u02.

For small angles cosui � 1� u2
i =2, therefore
u ¼ L½ðu2
1=2þ u2

2=2þ w2=2Þ � ðu2
01=2þ u2

02=2þ w2
0=2Þ�=3þ Dð3� u2

1=2� u2
2=2� w2=2Þ=3: ðA:18Þ
or
u ¼ L½ðu2
1=2þ u2

2=2þ w2=2Þ � ðu2
01=2þ u2

02=2þ w2
0=2Þ�=3þ D ðA:19Þ
when taking into account that ui � 1.

Initial imperfections for the model configuration in Fig. 4(b) given by u0 ¼ u01 ¼ u02 lead to
ðu2
01=2þ u2

02=2þ w2
0=2Þ ¼ ðu2

01 þ u2
02 � u01u02Þ ¼ u2

0; ðA:20Þ
where w0 ¼ u01 � u02. The assumption that u0 ¼ u01 ¼ �u02 for the model configuration in Fig. 4(c) leads

to
2 2 2 2 2 2
ðu01=2þ u02=2þ w0=2Þ ¼ ðu01 þ u02=þ u01u02Þ ¼ 3u0; ðA:21Þ
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where w0 ¼ u01 þ u02. The vertical displacements that occur in the two configurations of the three-link

model are
u ¼ Lðu2
1 þ u2

2 � u1u2 � u2
0Þ=3þ D ðA:22Þ
and
u ¼ Lðu2
1 þ u2

2 þ u1u2 � 3u2
0Þ=3þ D ðA:23Þ
for the shapes in Fig. 4(b) and (c), respectively.

If we further assume that not only the initial imperfections are represented by equal angles but the

models deform in a way that the rotational angles remain equal, then the corresponding expressions for the

vertical displacements become
u ¼ Lðu2 � u2
0Þ=3þ D ðA:24Þ
and
u ¼ Lðu2 � u2
0Þ þ D: ðA:25Þ
for the models in Fig. 4(b) and (c), respectively.
Appendix B. Progressive buckling

B.1. Equation of motion

The circumferential forces F hðxÞ in a circular cylindrical shell that buckles axisymmetrically give rise to

components F cðxÞ ¼ F hðxÞ=R when projected in the direction perpendicular to the mid surface and these
components contribute to the bending moments. The forces F cðxÞ account for the bi-axial stress state that is
characteristic of the bending phase and should be added to the bending moments of the model as shown in

Fig. 16
McðtÞ ¼
Z l

0

F cðx; tÞx cos/dx: ðB:1Þ
However, the circumferential forces are determined only for the cells of the model due to the discrete

approach used, so that an appropriate distribution of F c has to be assumed along the rigid links in order
M1

M1

M2, Mc

M2, Mc

l

Φ

2lsinΦ

l

Φ

F1
ccos Φ

F2
ccos Φ

Fccos Φ

(a) (b)

Fig. 16. (a) The hinge mechanism for the buckling phase, (b) bending moment due to the circumferential forces.
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to obtain a more realistic estimation of the influence of the circumferential forces. An average value

F cðx; tÞ ¼ ðF c
1 ðtÞ þ F c

2 ðtÞÞ=2 ¼ F cðtÞ is assumed in the present analysis as shown in Fig. 16(b) and as as-

sumed by Karagiozova and Jones (2000). Therefore, McðtÞ approximates the bending moment due to the

circumferential forces in a shell and is determined as
McðtÞ ¼
1

2
F cðtÞl2 cos/: ðB:2Þ
By taking angle / as a generalized coordinate, the kinetic energy of the model in Fig. 16(a) is
T ¼ 2

3
ml2 _/2 þ 2l2ðm� þ GÞ sin2 //2: ðB:3Þ
If a virtual displacement d/ is given to the system, then the virtual work done by the active forces

is
�2M1d/� 2M2d/� 2Mcd/; ðB:4Þ

so that the generalized force corresponding to the generalized coordinate / is
Q/ ¼ �2M1 � 2M2 � 2Mc: ðB:5Þ

The equation of motion of the model is obtained from Lagrange�s equation
d

dt
oT

o _/

� �
� oT
o/

¼ Q/: ðB:6Þ
as
€/ ¼ � 2l2ðm� þ G1Þ _/2 sin/ cos/þM1ðtÞ þM2ðtÞ þ 0:5F cðtÞl2 cos/
2l2½m�=3þ ðm� þ G1Þ sin2 /�

; ðB:7Þ
when substituting Eqs. (B.3) and (B.5) into Eq. (B.6).

B.2. Stress–strain relationships for elastic–plastic media subjected to a plane stress state and conforming to

the Tresca yield criterion

It is assumed that the strain increments are divided into elastic and plastic parts, so that the total

increments are
dex ¼ depx þ ðdrx � mdrhÞ=E;
deh ¼ deph þ ðdrh � mdrxÞ=E;
depz ¼ �ðdepx þ ephÞ;

ðB:8Þ
where m is the Poisson ratio. The equivalent stress increment, dre, satisfies the relation dre ¼ H 0 dep,
H 0 ¼ Ek=ð1� kÞ, where ep is the equivalent plastic strain. The increment of the equivalent stress for the

Tresca yield criterion in terms of the principal stresses is
dre ¼ dr1 � dr2; ðB:9Þ
where r1 and r2 are the minimum and maximum principal stresses. Neglecting the shear stress, the flow

rules for a material with a linear strain hardening can be obtained as
depx ¼
ffiffiffi
3

p

2H 0 drx; deph ¼ 0; depz ¼ �depx ðB:10Þ
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for dre ¼ jdrxj,
depx ¼ 0; deph ¼
ffiffiffi
3

p

2H 0 drh; depz ¼ �deph ðB:11Þ
for dre ¼ jdrhj and
depx ¼ �
ffiffiffi
3

p

2H 0 ðdrx � drhÞ; deph ¼ �dex; depz ¼ 0 ðB:12Þ
for dre ¼ jdrh � drxj.
The stress increments associated with each side of the Tresca hexagon are obtained when substituting the

corresponding Eqs. (B.10), (B.11) or (B.12) into Eqs. (B.8).
drx ¼ 2kEðdex þ mdehÞ½ð1� kÞ
ffiffiffi
3

p
þ 2kð1� m2Þ��1

;

drh ¼ Ef2kmdex þ ½ð1� kÞ
ffiffiffi
3

p
þ 2k�dehg½ð1� kÞ

ffiffiffi
3

p
þ 2kð1� m2Þ��1

ðB:13Þ
for those sides with dre ¼ jdrxj.
drx ¼ Ef½ð1� kÞ
ffiffiffi
3

p
þ 2k�dex þ 2kmdehg½ð1� kÞ

ffiffiffi
3

p
þ 2kð1� m2Þ��1

;

drh ¼ 2kEðmdex þ dehÞ½ð1� kÞ
ffiffiffi
3

p
þ 2kð1� m2Þ��1

ðB:14Þ
for the sides of the Tresca hexagon with dre ¼ jdrhj and
drx ¼
E

2ð1� mÞ½ð1� kÞ
ffiffiffi
3

p
þ kð1þ mÞ�

f½ð1� kÞ
ffiffiffi
3

p
þ 2k�dex þ ½ð1� kÞ

ffiffiffi
3

p
þ 2km�dehg;

drh ¼
E

2ð1� mÞ½ð1� kÞ
ffiffiffi
3

p
þ kð1þ mÞ�

f½ð1� kÞ
ffiffiffi
3

p
þ 2km�dex þ ½ð1� kÞ

ffiffiffi
3

p
þ 2k�dehg

ðB:15Þ
for the sides with dre ¼ jdrx � drhj.
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